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SUMMARY

The results of a theoretical and experimental investi-
gation of wall Interference for an airfoil spanni~g a closed-
throat circular wind tunnel are presented. Analytical equa-
tione are derived which relate the characterinticu of an air-
foil in the tunnel at subsonic speeds with the characteristics
in free air. The analysis takes into consideration the ef-
fect of fluid compressibility and Is based upon the assumption
that the chord of the airfoil Is small as compared with the
diameter of the tunnel. The development is restricted to an
untwisted, constant-chord airfoil spanning the middle of the
tunnel. Brief theoretical coneld6ration Is aleo given to the
problem of choking at high syeeds. Results are then presented
of tests to determine the low-speed characteristics of an lTACA-
v4412 airfoil for two chord-diameter ratios. While, on the
basis of these experiments, no appraisal is possible of the
accuracy of the corrections at high speeds, the data indicate
that at low Mach numbers the analytical resulte are valid,
even for relatlv~ly large values of ths chord—diameter ratio.

INTRODUCTION

The design of modern high-performance airplanes requires,
insofar as possible, an accurate knowledge of airfoil profile
data at Reynolds and -Mach-.numk-ersattained in flight. Since
‘the size and power of wind tunnels are subject to various
practical limitations, most existing tunnele, even if they can
provide the desired Mach number, are not capable of att~inlng
full–scale Reynolds numbers for all flight conditions. To
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minimize th5e shortcoming in “tunnel tests of airfoil Erofiles,
It is therefore necessary to use models having as large a
chord as possible relativq to the cross-sectional dimensions
of the tunnel test section. In order to eliminate the effects
of supporting struts and to exclude the Indeterminate tunnel-
boundary interference Involved in the testing of large-chord
airfoils of limlted span, it has become oormon practice in
cuch tests to use alrfolls which completel~ span the test se-
tton. Even for these so-called ‘lthroughll models, however, the
tunnel-boundary Interference can still be considerable, and
accurate corrcctton muet bo made for its effects if the tunnel
data are to be used with confidence in the calculation of free
fligilt airplane characteristics.

Yhe tunnel-boundary Interference for airfoils spanning
wind tunnels of various types has been the subject of numerous
theoretical and experimental investigations. The interference
for rectangular tunnels having rigid walls normal to the span
of the airfoil and either rigid walls or free boundaries paraP
lel to the span has been discussed theoretically by eeveral
writers. I’or example, Lock (reference 1), Glauert (refereuce
2), and Goldstein (reference 3), give the necessary tunnel–wall
corrections for an airfoil spanning a rectangular tunnel In an
incompressible fluid; #hlla Goldstein and Young (reference 4)
show how these corrections, as well as those for any general

case of interference Ln an incompressible fluid, can be modi-
fied to take account of fluid compressibility. Reference 5
.glvee the correctiofis for the compressible case in a closed–
throat rectangular tunnel, afl well as a critical discussion
of the results of the previous references and some experi-
mental data from low-speed tests. rage (reference 6) also
presents experimental drag data for several symmetrical bodies
of various sizes in a closed-throat rectangular tunnel. Ex-
perimental a~d theoretical results for an airfoil spanning a
completely open-throat rectangular tunnel are given by Stuper
(references 7 and 8). The case of an airfoil spanning an
open—throat circular tunnel has been the subject of a number
of Investigations, including theoretical treatments by Glauert
(reference 9), Stiiper (references 7 and 8), end Souire (ref-
erence 10), and experimental measurements by St5pcr (refer-
ences 7 and 8) and AdamEon (reference 11). Apparently, the
c~se of the cla80d-throat circular tunnel has received no nt-
tention.

Since this last case is ofton encountered in practice.,
an investigation was made of the tunnel-wall Interference at
subsonic speeds for a wing spanning a closed-throat circular
tunnel. The present paper presents the results of this in-
.-
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vemtlgatlon. In the first part of the paper, analytical equa-
. tioqq are derived relating the oharaeterietics of the airfoil-.,-

In the-tunriel with tli’o”se”’lh”-free ‘atr”fer a compress~ble .fluid.
Some consideration Is also given to the phenomenon of choking
which oocure at high speeds. In the seoond part, the validity
of the theoretical results is examined by the analysis of ex-
perimental data for an NACA 4412 airfoil far two ratios of
airfoil chord to tunnel diameter. The investigation is re-
stricted to untwleted constant-chord airfoils spanning the
middle of the tunnel.

THEORY

As In reference 5, the theoretical development of the
tunnel-wall corrections is divided conveniently into two gen-
eral sections. l’irst, the influence of the wall upon the
field of flow at the airfoil In the tunnel is determined. “
Second, the aerodynamic characteristics of the airfoil In thle
field of flow are related to the corresponding quantities In
free air. In this manner, simple formulas are finally ob-
tained which enable the prediction of the free-air character-
istics when the characteristics in the tunnel are known.

Again as In reference 5, the analyulm Is based upon the
method cf superposition. To this end, it is assumed that the
airfoil Is cf small thickness and camber, so that the induced
velocity Is everywhere small as compared with the velocity,
of the undisturbed stream. With this assumption, the total
induced velocity at any point is the simple vector sum of the
separate velooitles induced at that point by the Interference
between the tunnel wall and the airfoil camber, thicknees,
and wake. Thus the effects of camber, thickness, and wake
may each be analyzed separately and superposed to obtain the
desired reeult for the complete airfoil. As pointed out In
reference 5, this procedure is permissible even In the com-
pressible fluid If the airfoil Is of small thickness and cam-
ber as assumed.

Before proceeding .to the actual development of the theo~,
it Is useful to contrast the preeent problem with the problems

b. of thzough. ,airf,oilg.in the various types of rectangular tunnels
and in the open-throat cikcultir””%uhnel~,”)5n-*ire aaBe” of an
airfoil spanning a rectangular tunnel having rigid walls nor-
mal to the span of the airfoil, the problem is relatively
simple. If the effect of the boundary layer along the tunnel
walls Is neglected, the flow is sens$bly the same in all planes
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normal to the span: that 1s, there iEI olearly no spanwise
.variatlon in lift. The air flow is thus essentially two-
dimensional, and the interference mroblems of oamber, thick-
ness , and wake can be analyzed by the customary means of a
eystem of images vith axes parallel to the span of the air-
foil (references 1, 2, 3, and 5). This is true whether the
tunnel boundaries narallel to the span are fixed or free.
In this manner, tunnel-boundary corrections can be derived
for airfoils of moderately large chord as compared with the
height of the tunnel test section.

In the case of an airfoil spanning a completely free
jet, whether rectangular or circular in section, the lift
necessarily falls to zero at the boundary of the jet. There
thus exists in this case a pronounced span~lise variation in
lift and an attendant system of trailing vortices+ In the
existing treatments of the problem, only the interference
between these trailing vortices and the jet boundaries is
considered, the interference effects associated with the
chordwise distribution of bound vortices and with the air-
foil thickness and wake being completely neglected. This
procedure implies the assumption that the ohord of the air-
foil is very small relative to the dimensions of the Jet.
In this manner, the problem is reduced to a limltin~ case
of the usual problem of an airfoil partially spannin~ the
jet, and, .P,sin this latter case, the component of down-
wash induced at the airfoil by the interference between the
walls and the trailing vortices is one-half as great as the
corresnondlng component an infinite distance do!fnstream.
The theoretical determination of the wall interference may
thus be treated as a problem of two-dimensional flow in a
plane normal to the axis of the tunnel infinitely far behind
the airfoil. The boundar:~ conditions for either the
rectangular or circular jet are then readily satisfied by -
the introduction of a suitable system of image vortices with
axes parallel to the axis of the tunnel (references 7, g,
~, and 10). This method of analysis, however, is inadequate
if the chord of the airfoil is even moder:.tely large as
compared with the dimensions of the jet.

The case of the airfoil spanninf? a closed-throat circu-
lar tunnel is more complex than either of the forepoin~ prob-
lems. Unlike the condition prevailing in the free jet, the
lift in this aase need not fall to zero at the boundary -
that is, at the tunnel wall - so that the spanwise variation
in lift Is not necessarily large. In faot, se will be seen,
the lift is constant across the span of the airfoil, and no
system of trailing vortices exists. The assumption of a very
emall chord and the consequent reduotion of the nroblem to a
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case of two—dimen~ibnal flow in a plane infinitely far down-
nt~9am ..1.sthus wit,hout m~an~ng.” On the other hand, an ansly-
sis for alrfolls of moderately lorge”oh’ord”in the manner em-
ployed In the case of the rectangular tunnel with rigid side
wnlls Is not possible. In the closed-throat circular tunnel
the flow in all planes normal to the span of the airfoil Is
not the same, sc that the effect of the bound vortices, and
of the airfoil thickness and wake as well, cannot be treated
.Rs a problem in twc-dimensional flew. Furthermore, the bcund-
ary conditions at the tunnel wall cannot be satisfied for the
actual three-dimensional problem by any known system of Imegos.
The ~olution of the problem for the closekthroat circular
tunnel thus requires an analysis entirely different from those
employsd in the previous instancee.

Influence of Tunnel Wall upon Field of Flow at Airfoil

An approach to the problem of the airfoil spanning a
c}ose,d—throat circular tunnel is afforded by the work of Von

“ Xarmaa and Burgers in reference 12 (pp. 266 to 273), where
the velocity potential at an arbitrary point in the tunnel is
determined for a U-shape vortex of Infinitesimal span in an
Incoanressible fluid.

A system of rectangular coordinates- x, y, z “is lntro–
duced as shown in figure 1. The x-axis is taken on the center
line of the tunnel with its posltlve direction downstream.
The z-axis is posltlve downward, and the -axis pcsltive to
the left for an observer locking against the direction of flow.
An alternative system of cylindrical coordinates x, W, e is
defined by the relations

Y = Is Ccs e
\

1
(1)

z = w sin 9

The positive directlcn of circulation ie defined so that a
vortex with positive circulation exerts a force on the fluid
in the direction of the pcsitlve s-axis. In other words,
the lift force experienced by a positive vortex Is In the
.pegatlve z directloa. The velocity of the fluid in the u-
disturbed stream ii denoted-b~”’V? “and the radius of the
‘tunnel by r. Other symbols are defined an introduced in the
text. A list of the more important symbols and their defini-
tions is given In appendix C.
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Ccnsidor now a U-shape vortex of Infinitesimal epan dq “
parallel to the ZXIS and situated in the yz-plane at tho
point n = ~o cos @o, ~= W. sin eo. If the strength of the

vortex iB d~noted by I’!, the velocity potential in the
clased tunnel at the points x, W, e is given by Von K&rm&n
and Burgers , for negative valuea of x, as

where

(2)

2(~-x)-—
ra (3)

( ?t shuuld be noted that the quantity ~ appearing in theee
aountiore ie ne~ely a vnriable of Integration and hae no
physical significmce.) The quantity Jm( ASW ) is a Bessel
function of the first kind of the order m. The sumnatlon
with respect to m extends over fill the positive integers
and includes m = O; the prime added to the eunmntion sign
Indicntes that a factor 1/2 mugt be Inserted before the
term corresponding to n = O. The eunmation with respect to
e for ~very m extends over all poeitive roots of tho equm-
tion

JnZ(Asr) = O (4)

wher e .Jm’(~sr) is the”deri~atlve of the function J=(A~r)

with reopect to its argu.=en<. The notation used throu bout
this pa er for th~ Bessel functicnG is that of Watson

7
f’refer-

ence 13 , which is the same as th~.t of the Smitheonlan tablee
(reference 14).

By differentiating ~ with respect to ~ and then in-
tegrating with respect to t as indicated in equaticn (2),
the velecity potential becomes finally
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eAex Jm(Aem)m’s
-, . . .. T.= -.nr=

1 L . (1-*) ‘saJma(’a’)
m= O 6=1

x
[

Jm(~swo)m cos eO eln m(G-eo)
Luo .

+ Le sine. coe m(Q-Oo)” Jm’(~s~o) 1 (5)

As peinted out, this expression applies .only at negative val-
ues of x. As wI1l be eeen later, the neceeeary resultn for
poeitlve valuee of x can be derived from consideration of
symmetry.

By means of equatloh (5), it is possible to evaluate the
wall interference aOsoclated with both airfoil camber and
thlckfiess for the case of the incompressible fluid. These
rasults can then be modified for the effect of fluld compres-
sibility by the methode of reference 4. It is found finally
that , for a closed-throat circular tunnel, the effects of in-
terference between the walls and the airfoil camber are iden-
tical with the corresponding Interference effects for the
same airfoil spanning a closed-throat rectangular tunnel, the
height of which bears a known relation to the diameter of the
circular tunnel. A slmllar conclusion 18 obtained regarding
the effects of Interference between the wane and the airfoil
thickness, except for a numerical difference in the relation
between the diameter of the given circular tunnel and the
height of the equivalent rectangular tunnel. The interfer-
ence effects aesoclateii with the wake of the airfoil are not
analyrned in detail, but their magnitude can be estimated with
reasonable accuracy by comparison with the results for the
th~ckness effect. In order to simplify the complex mathe
matice of the problem, the Interference effects are calcu-
lated only for the section of the airfoil at the center llne
of the tunnel. As will be seen later, however, experimental
data indicate that the results are applicable at any spanwlee
station,

Camber effect.- To analyze the effect of the interfer-

ence between the tunnel wane and the airfoil camber, the
thickness and wake of the airfoil are considered to be removed
and the airfoil reduced to its mean camber llne. The result-

—— —— — -—— .— --—.
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ing infinitesimally thin airfoil may then be replaced by a
sheet of continuously distributed, bound vortices which, in
the general thre-dimenei~nal caee, consist of both spanwise
and chordwise vortlcea. The ~elocity Induced at any given
point on the camber line is then obtained by integration over
the entire vortex sheet. As in all thin-airfoil theory the
distrl?mtion of bound vortictty must be such that the result-
ant of this Induced velocity nnd the free-stream velocity ie
tangential to the camber lir.e at all points. AfI will be seen,
however, the actual theoretical determination cf the dlstri-
butien of .vorticl.ty is not necessary in this case.

In calculating the velacity field of the vortex system,
It Is assuned that the bound vorticity is distributed In the
middle plane cf the tunnel - that 1s, in the xy-plane -
rather thaa along the camber line and that the induced veloc-
ity at any point cn the camber line is the same as the induced
velocity at the corresponding poiGt In the xy-plane. Fr on
equation (5), the veloclty potential at any point x, w, e
for a vortex elenent on the y-axis at the point y = q (e.

= o, W. = q) is

The terc for m = O disappears by virtue of the factor m
In the numerator of the general term. The vertical Induced
velocity VXJ in the Incompressible fluid is then

a~
Vz’ = — =

aJ3ae+”*”a&
?)% ae a= au a=

&
For points in the x~plane (e = O, w = y), az = O and & = ~.

Thus , at points in the xy—plane,

m=l s=l

ma e‘sx Jm(Asy) Jm(Asq)

‘Y(l-A+)’F “N(’sr)

(7)

The complic~ted double series in thfe equation can be reduced
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to a single series and the mathematics of the problem greatly
_. simpllfded .by. llmit Ing the .d,iaguasion to the chordwise sec-

tion of the airfoil at the center line of the tunnel {y = 0,
% = 0). From the known relations for Bessel functions (cf.
reference 13), for y = O

JX(Asy)
.— = 1/2

Any

Jm(Xsy)
—=0 form>l

Asy

Thus , at p~ints on the X-axlm,

S=l. ‘ (lL+=)‘s ‘p(-)
r~spect to s extends over allwhers the summation with

the positive roots of the equation

J1’(Aor) = O

Ii’romBesselts differential equation

JI
(

)“(Asr) = - 1- ~~Jl(~sr)
s

(9)

(lo)

where the double prime denates the second derivative of the
Bess Gl functiou with respect to its argument. Xquatlon (8)
can thus be written

(11)

As mentioned, thie equstion ie valid only for negative valuee
of x.
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It Is apparent that the series in equation (11) Is rapid-
ly convergent for large negative values of x, but that the
convergence Ie slow for emall negative values. Since in the
evaluation of the velocity induced by the vortex sheet it is
the small values of x which are of primary Importance, equ-
tion (11) cannot be applied directly ir. the present case. It
is possible, however

J
by meane of a method demonstrated by

Wateon (reference 15 , to express the series of this equation
as a combination of elementary functions and a series of as-
cendiug powers of x and q. The reeulting series is readi-
ly applicable to the preeent problGm.

The detailed procedure for the transformation @f the
series of equation (11) is give~ In ap endlx A.

7
By applica-

tion of the finsl result, equation (11 may be written

The double summation extende over all integral values of k
and p from zero to positive infzr.lty. The numericnl coef-

ficient
~’2(k+p+l!

= ~“2f is given by tho integral

w

~’2f = 1

J
&->lfi dt- —.—

(2f+l)ll
(13)

[ll’(t)]a
0

Hsre II(t) is a modified Bessel function of the first kind

of order unity, and Ii’(t) denotee the derivative of Ii(t)
with respect to itc argument. The numorlcal values of W’af

for f = 1, 2, 3, 4 nre evaluated by means of a eories ex–
pnnsion in zp~endix A.

It is ree.dlly shown thmt the first term on the right-
hand eide of equation (12) %greee witti the induced velocity
conputed for x = O by the more elementary theory of tunnel-
wall int~rfer~nco which ccnsiders only the effects of the
trmiling vo?tices cnd their Imagee. To this end, consider
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the twoQdimensional flow In a plane normal to the axis of tho
tunnel au lnfi~lte distance downetreaa (fig. 2). The theory
et.5tes that t’HB-fndac’ed vclocity”at.a given point--(y,s) in
this plane Ie twioe ae great 68 the induced velocity nt the
corresponding point in the plane x = O (cf. reference 12,
p. 2601. In the plane X=m, the trailing vortices of the
U-hhape vortex previously conslderod constitute a vortex pair
having an infinitesimal spacing dTI and eltuated at the
point y= q, 5 = O. The circulation of eaoh vortex of the
pair is r! and 1s directed ae shown In figure 2. 9!he boun&
ary condition that there ehall be no flow normal to the wall
of the tunnel can be eatisfiGd by the introduction at the
point z = O, y = ra/q of an Imago vortex pair with a spac-
ing r~dm/q~ and with the circulation of the vortices dlreeted
ae ln3.icated. .The vertical velocity Induced at the center of
the tunuel by the trailing vortex pair is

and the vertical veloclty induced at the same point by the
inage vGrtex Fair is

The total vertical velocity at the center of the tunnel at
x =- is then the sum of these two velocities; that” is,

rfdn (ra+rla)Vzqco) = -
2Tr raqa

(14)

The vertical velocity at the center of the tunnel at x = O
is one-half of this valua, or

rfdq (ra+~a)
. -,,. v=!(o) =-

‘4Tr ran= ‘- -
(15)

This value agress with the result of equntion (12) for the
special case x = 0. Thus, the firet term on the righ&hand

..
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side of equation (12) represents the vertiaal induced velocity
on the center line of the tunnel at x = O and is attribut-
able entirely to the trailing vortices and to the interference
between these vortices and the tunnel walls. The remaining
terms represent the varlatlon in Induced velocity due to a
displacement a distance x upstream from the origin. These
terms arise both from a change ih the effect of the trailing
vortices and their wall interference and from the now-active
effect of the transverse bound vortex and its interference
with the tunnel walls.

Although equation (12) was deduced for negative values
of x, it can be shown that It is applicable to positive
values of x aO well. According to Von K&rm&n and Burgers
(reference 12, p. 267), the vertical induced velocity at
-x is related to the corresponding velocity at +x by the
equat~.on

Vz’(—x) = Vzl(m) - Vzf(+x)

By virtue of this relation, together with the fact that

Vgl(o) =:VZ ‘(~), it follows that

Vzq+x) - Vzl(c) = – [Vzq-x) - Vg’(m (16)

That iS, the difference between the induced velocity at a
given ntatlon x and the induced velccity at x = O must
be an odd function of x. The terms containing x in equa–
tion (12), which were derived to represent this difference
for negative values of tho variable , are seen to constitute
precisely such a function. ?!hus the expansion of equation
(12) is valid for positive as well as negative values of x.

The vortex sheet which represents the entire airfoil can
now be built up by the superpoaitlon of UYshape vortices in
the xy-plane, and the total induced velocity fwund by inte-
gration of equation (12) over the entire system. The lead-
ing edge of the airfoil Is placed on the y-axis as shown in
figure 3; the trailing edge than lies at x = c, where c
is the chord of the airfoil. The circulation of an elementa-
ry vortex havln

f
an infinitesimal span dq and situated at

the point x = Y=n is taken to be
(d17’/d~)

(drl/dL)d5, where
is the’vorticity per unit length of ths chordwise

section at. the ~tatlon Y=n. The vertical velocity Iaduced
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mt the chordwiae station x on the center line of the tunnel
by a single elementary voztex Is given by equation (12) If x.--i.~..l

‘ark +“kplaceiiby (x-~) ’-aml ‘~(dI’{/d~)d~h .respeotively.
The total vertical velocity induced by the complete airfoil
i~ then given by %he double integral

(17)

The iutegratlon of equation (17) requires a knowledge of
(drI/d~) as a function of q and t. Theoretically,
(dri /d.~) could be determined from the requirement that the
induced vertical velocity at every point on the camber line
must be such that the resultant of this velocity and the
fre-stream velocity is tangential to the camber line. This
method ef prmcedure leade, however, to a compllcatod double
Integral equation, the splution of which doee not appear
feasiblbo Some assumption concerning the distribution of
vorticity must therefore be made if the problem is to be
solved. To aid In the cholco of n suitable assumption, ex-
periments were carried out to determine the preesure dlstrl-
butlon, both chordwise end spanwlse, over an airfoil spanning
a clceed-throat circular tunnel. The airfoil used in the
9xI,erlmonts , which are described in detail later in the re-
port, had an IiACA 4412 section and was untwisted and of con-
etant chord. The results of these experlmente reveal that
for euch an arrangement the Lift is eenslbly uniform acroes
the span for anglea of attack below the stall. This fact
IG illustrated in figures 6 and 7, which chow the experimen-
tal spanwlse lift distribution for tho airfoil at various
angl~e of attack in wind tunnels affording chord-diameter
ratios of 0.357 and 0.625. These results were at first re-
garded as rather surprising. Later , however, It was realized
that they are onl~ what might logically be expected from gen-
eral consideration of the conditlone of flow In a closed-
throat tunnel. A demonstration ef this fact is given @ ap-
pendix B, in-which it is, ehown that the. llft distribution Is
uniform aoross an untwisted, conetant-chord airfoil spanning
any closed-throat wind tunnel, irrespective of the croea–ee-
tional shape of the tunnel. Detailed examination of the pres-
sure distributions fron w~ich the re~ults of figures 6 and 7
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were obtained reveal further that at a given angle of attack
the chordwise pressure distribution is sensibly the same for
all spanwlse stations on the airfoil; that iss the lift per
unit chord at any given chordwise station is constant across
the span. It is to be expected that this result, though ob-
tained for a particular airfoil, will be equally true for any
ordinary camber-line shaTe. Thus it is reasonable to assume
that th~ distribution of bound vortlcity is not a function of
the epanwise position on the airfoil; that is (dr’/dt) iS
independent of TI.

On the basis of this assumption, equation (17) may be
wr itten

L./(i3Jr1-Y - N>*Vut = -—

m m (–l)p #2(k+p:1)?p
‘J’

(&~)~P+l

+) 1dqdt (la)

k=o p=d k! (k+l)! (2p+l)! 2*k ra(k+p+l)

and the integration carried out with respect to ~. The first
two terms of the integrand, however, become infinite at the
point q = O. These ~ingularities, which are duG to the ef-
fects of the vortices trail~ng from the vortex elements on
the ~axis, require that special care be taken in the lnte-
gratlon. The evaluation of the Integral must be carried out
from -r to -C and from +E to +r, and to *he resulting
function met be added the effects of the trailing vortex
pairs of span 2C which straddle the x-axis. The limit of
this sum must then be taken as c tends to sero. The verti-
cal velocity induced at the point x on the x-axiO by the
vortices trailing from a vortex element of span 26 symmetri-
cally placed at x = !,Y=o~s

Since the first two terms of equation (18) contain only second-
order Pt)wei-s of n, the Integrals from -r to -c
+C to +r

and from
will be equal. The integral of these two terms

with rsspect to n thus becomes finally
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+r

J[ _dh L r( x-!)

1
ill. ... .. . rll@ ”---

-r ~a4mG=m - -
+r

Lf[= llm 2
ra+q a r(Jx-&)

‘+o L ‘c
-?-~~ I dq

The Integration with respect to q of the double series in
equation (18) presents no difficulty. The expression for
v%’ thus becomes after integration

F

Lmm
(–l)P ~’ 2p+ 1

yy 2(k+p+l )+
(–) I

x-t d~ (19)

i:o ;:0
ak—1 r

k! (k+l)! (2p+l)! (2k+l) 2

For constant spanwlse circulation, the trailing vortices
finally disappear in the inte ration with respect te q.
The Integrand of equation (19 ! thus repres6ntfa the increment
of vertical velocity induced by an elementary vortex of con-
stant circulation completely spanning the tunnel.

It will now be assumed that the chord of the airfoil 16
small enough aa compared with the dimensions of the wind
tunnel that powel”taof (x-~)/r greater than the first may be
neglected in the integrand of equation (19). Thie is equiva-
lent to assuming that powers of the chord-diameter ratio
( c/d) “higher than the eecond may be neglected in the final
equations for the tunnel-wall correction. The approximation
is accomplished by expanding the first term of the integrand
In asaonding powers of (x-t]/r and diecardlng all terms con-
taining powers higher than the #i~st and by retaining only the

— . .. -. . . —.. .—.-— . . . . . —. — —-
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P = O terms of the double series. This gives for the Induced

velocity

V5’

c
1

=—
4rlr J

0

()

-g
+—

r

[
In

L’k=

2

73x-
r

V’2(k+l)

k! (k+l)! (2k+l) 2a&l

which nay be written

By substituting the numerical values for the coefficients

‘[2(k+l) from equations (*w) of appendix AC this equation

may be written to an accuracy of three significant figures as

(20)

o

The foregoing result, which was derived by assuming the
fluid to be incompressible, can be modified for the effect
of compressibility by the methods of Goldstein and Young.
The modification is most readily performed by means of the
so—called “Method 11” (reference 4, pp. 5-6), which compares
the compressible and incompressible flows for equal values of
circulation. If the Mach number of the compressible flow at
the position of the alrfoll Is denoted by M, it Is resdlly
shown on the basis of this method that for a given distribu-
tion of vorticity the vertical velocity induced In n compres-
sible fluid at an

h
moint on the center line of a tunnel of

radius r is times the corresponding velocity at the
sam~oint In an incompressible fluid In a tunnel of radius
rfi-M a. Thus , from equation (20), the vertical velocity Vzr

in a compressible fluid In the actual tunnel of radius r Is
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~z’ = ~ f(%)[:-“r:;::.,‘+’1”” ‘(2’).
The first term of this equation represents the vertical velob
Ity that would be induced by a vortex sheet of infinite span
in an unlimited fluid field. Zhe second term thus represents
the Interference effect of the tunmel wall.

Equation (21) may”,be coqpared with the corresponding r-
suit from reference 5, which discusses the wall Interference
for an airfoil in a closed-throat two-dimensional-flow wind
tunnel . After alteration to conform with the notation and
sign conventions of the present paper, equation (41) of refer-
ence 5 gives for the vertical velooity at the camber line of
an infinitesimally thin airfoil mounted on the center line of
a two-dimensional-flow tunnel of height h

v,, h== .}(~)[+- “2 (+., ,2,,211 0 6ha(l-Ma)

Comparison of equations (21) and (22) shows that an infiniteta–
imally thin airfoil spanning a closed-throat circular tunnel
of rndiuO r experiences at its midspan section the same in-
terference as would be experienced by the same airfoil in a
closed-throat two-dimene lonal-flow tunnel of height

hl =,~*f r = 1.686 r

or, in terms of the tunnel diameter d,

hl = 0.843 d (23)

Thie result makes the later determination of the interference
corrections for the circular tunnel very simple, since the
correction for the rectangular tunnel are already known..., ., .,

It ie readily ehown by means of equation (6) that the
vortex system which represents the Infiniteelmally thin air-

— . , ,,-, , , -—.-.. .- . - -... . . . . .—



18 HACA ACE HO. 5D21

foil Induces no axial velocity at any point in the xpplane.
It follows that airfoil camber has no effect upon the axial
velocity or pressure gradient at the position of the model.

Thickness effect.- The Interference effects arnsociated

with airfoil thickness can be found by reducing the given
airfoil to Its base profile and analyzing the Interference
between the tunnel wall and this profile. The base profile
is defined as the profile the airfoil would have If the cam-
ber were removed and the resulting airfoil placed at zero
angle of attack. If it ie aseumed that no wake is present,
the interference between the tunnel wall and this symmetri-
cal airfoil can be found by applying the results of equation
(5) to Lockls method of analysis of the interference on a
symmetrical body In two--dt%enslonal incompressible flow.
(Lock~s original analysis appears in reference 1; an alterna-
tive explanation of the mathod is given by Glauert in refer-
ence 2, pp. 52-57. )

Lock!s method of analysis, which assumes that th~ chord
of the airfoil is small as compared with the dimensions of
the tunnel, consists essentially in rQplacing the given
symmetrical a~rfoil by an equivalent two—dimensional sourch
sink doublet aad calculating the interference between this
dbublat and the tunnel boundaries. The strength of the doub-
let in any given czse is proportioned so that It induces at
a considerabl~ distance from itself In free air a velocity
equal to the velocity induced at the same point by the origi-
nal airfoil. In the two–dimensional case, the interference
flow at the position of the airfoil is then readily found by
introducing an infinite series of images of the doublet such
as to satisfy the condition that there shall be no flow nor-
mal to the tunnel boundaries and calculating the velocity
induced at the airfoil by this system of images. 3’or an air-
foil spanning a close~–throat rectangular tunnel at mid-
height, the net result of the wall Interference for the in-
compressible case Is to increase the effective axial velocity
at the position of the airfoil by the amount

where w is the etrength of the doublet used to represent
the airfoil. It 1s shown in references 4 and 5 that the ef-
fect of fluid conpressibillty Is to increase this interference
veloctty by the factor l/[l-(Ml)a] 3/=, where M* is the
Mach number of the undisturbed stream in the tunnel. Thus, In
the compressible case,
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(24)

The problem of the symmetrical airfoil In,a closod- .
throat circular tunnel can also be solved by replacing the
airfoil by an equivalent doublet. spanning the tunnel. In
this ca~e, though, the interference for the doublet cannot
be found by the method of Iaagee. If the doublet used is \
oomposed, however, of two vortt~as In a plane normal to the
stream instead of the customary source and sink in line with .
the stream, the interference velocity oan be calculated by
means of equation (5). Since the velocity fields of the two
types of doublets are identical, the Interference calculated
by memns of the vortex doublet Is the same as that which
would be obtained if the source-sink doublet were used.

Consider a vortex element of circulation r; and span
dn at the point ~o D 00 in the yz-plane (fig. 1). I% om

equation (5), the streamwise velocity Vxl induoed at any
point x, U)z e upstream from the origin by this element and
Its accompanying trailing vortices 10

?lCp rfdq
I

Vx’ = — = -— m s
ax nr a

‘z G-;;::;’sr)
m~o s-l

[

Jm(~aWo)
x R ces e. sin m(e-eo)

Wo

+ Aa sin

At a point in
e = o, ~ =Y,

00 cos m(e–eo) Jn’(Aswo) 1 (26)

the middle plane of the tunnel (xy-plane),
and the velocity is

rldq
Vx’ = .mra

- “%051(i--)’isJ~a(’sr) ‘
[

JmoLsw~)
x. - h cos e,. sin me. ——

W. 1
+ 3S aln @o cos me. Jm’(~swo). (26)
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As before, the double serieta in this equation reduce~
tc a single eeriee if the discussion is limited to the inter-
ference at the cefiter line of the tunnel. For points on the
center line,

Jo(A~Y) = JO(0) = 1

Jm(A~y) = Jm(0) = O for m = 1

and the streamwise induced velocity becnmes

m eAax
rld~

I

8in eo Jo’(A~wo)

Vx’ = - %r a Jo?(hsr)
8=1

From the known relations for the Bessel functions

JO’(~aWo) = - Jl(~swo)

so that equation (27) may be written

m

r:dq
Y

eAsx sin e. JZ(ASWO)
Vx’ =

2nra -I Joa(Aer)
8=1 .

(27) .

(28)

(29)

Ata required by equation (4), the summation with respect to
e in this equation extends over all poeitlve roots of the
equation

Jo’(hsr) =- J1(Aer) = O (30)

As the next step, consider a pair of symmetrically placed
elementary vortices composed of a vortex of circulation _rl

at the point Wo, GO and a vortex of circulation +rl at

the point Wo, -Ho. Yrom equation (29), the streamwlse velo~
ity Induced at a point on the center line of the tunnel by
this vortex pair and the accompanying trailing vortices is

m

M!l T 3X sin e. J (~sWo)
Vxl = - (31)

nra + Jo2(Aer)
S=l
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which may also be
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. . . . . ... . . .
w- Aax-

12r1 W. t3in e.. dm . e J1(A#o)
(32)

%ra W. fj=l Joa(h~r)

The expression (21’~woflin 9.) which ‘appears in this equa-

tion is the product of the vortex strength and the dletanoe
betveen the vortices.

Eow let the distance between the vertices tend to zero
while tbe vortex strength increases in such a way that the
product (2 Pwo8in eo) retains a constant value I.L. The re
suit Sn the limit is an elementary vortex doublet of strength
w and span dq at the point w. = q on the y-axle. The

etreauwise velocity induced on the.oenter line of the tunnel
by this elementary s?anwiae doublet and tha accompanying
trailing vortex doublets is then

(33)

As before, the Infinite serlee in thle equation is
rapidly convergent for large negative values of XP but the
convergence is slow for small negative values and Is non–
existent when x = O. Once again, hovever, the series can
be expressed as a combination of elementary functions and a
power series which is readily applied to the problem at hand.
The details of the transformation are given in appendix A.
By means of the final result, equation (33) can be vrltten

I=_&l
[

ra
Vx

2wra 2(q=+x=)~l=

m

-H (-1P’ ~ ~ak =sp
a(k+p+ 1)—. — 1 (34)

k=U “p=o .k!.(k+l)l (,~p)! 2a&.! r.=k+~p+i

where the double summation extends over all integral values
of k and p from sero to Infin$ty. The coefficient

●

I
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%(k+p+l) = ~af is given by the Inbegral

The numerical values of this integral for
are evaluated in appendix A.

(35)

f =1,2, 3,4

The Induced velocity for a doublet spanning the tunnel
is now readily found by taking the doublet strength u con-
stant acroes the span and integrating equation (34) with
respect to q from -r .to +r , Thi~ gives finally

w

[

rs
Vx’ = — —2nr 2 x%f~

m q (-l)p Wa(k+p+l) Xap

-~)

1-

(36)
4- k! (k+l)! (2p)! (2k+l) 2ak rapk=O p=O

In the int~gration across the tunnel, all the trailing vorti-
ces, of course, disappear.

It is apparent from the symmetry of the problem, that
the streamwlse velocity induced by a doublet spanning the
tunnel must be an even function of the variable x. Equation
(36) , whioh was derived for negative values of x, Is seen
to be such a function and is thus applicable to positive val-
ues of the variable as well.

The values of Vxl for vanishingly small valuee of x,
that is, at the position of the doublet, is then found from
equation (36) by expanding the first term in ascending powers
of xfr and discarding all terms containing second powers
and higher and by retaining only the p=O t~rms of the
double series. This gives

[

m

raA —_.L–
7

~a(k+l) _
Vx’ = - ‘1 (37)

2mra X2 2
k~o k! (k+l)! (2k+l) 2ak J

After eubetitution of the pumerlcal values for the coefficients
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‘a(k+l) from equations (MILT) ,af appo~dix A, this equation

,, hecomee to tin ~c,cura.ay of three significant figures.,. , ..

P’+ 1.356vx’ =-— U

2nsa 2nr a
(38)

The first term of equation (38) Is the velocity induced
by a doublet of infinite span in a field of unlimited extent.
The rsmalning term therefore represents the effect of inter-
ference between the doublet 8nd the tunnel wall. Thus the
net result of the interference between the airfoil thickness
and the tunnel wall for the incompr~ssible fluid is to in-
crease the effective stream velocity at the posttion of the
alrfoll by the amount

(39)

In any particular caae, w is ngaln
of the doublet used to represent the

equal te the strength
given airfoil.

be modified for the ef-
method ef reference 4.

The result of equation (39) can
feet of fluid compressibility by the
In this case, the modification Is most conveniently performed
by means of Method I (reference 4, pp. 3-5) which compares
the compreeslble and Incompressible flows for a given airfoil
of unaltered shape and else. By this method., it is readily.
ehown that the streamwise velocity Induced in the incompressi-
ble fluid at an

is 1/+
point on the center line of a tunnel of radius

r times the csrrespondlng velncity at the
same point In an lnoompressible fluid in a tunnel of radius

my. Here M’ is, as before, the Mach number In the
undisturbed stream. The Incr-ement in.axial velocity in the
comprosqible case is thus

(40)

-.. .. . Comparison of equat:,ons (24) and (40) .shows th~t, if no
wake is preeent, a symmetrical airfoil” spcinning a closed-
throat circular tunnel of radius r experiences at its mid-
span section the same increa~e in axial velocity as would be
experienced by the same alrfoll In a closed-throat two-dimen-
eional-flow tunnel of he$gh~
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ha =
u_ r = 1.558 r

~+iiiii-:%iy)

or, in terms of the tunnel dimeter,

ha = 0.779 a (41)

The foregoing result greatly simplifies the determination of
the true stream conditions at the position of the airfoil In
the circular tunnel since the necessary equations for the
rectangular tunnel are already known.

Consideration of the ey~metry of the sygtem formed by
a base profile spanning the middle of a circular tunnel indi-
cates that the Interference between the wall and the airfoil
thickness does not influence the vertical Induced velocity
vz~ at any point on the aii-foil. Similarly, the airfoil
thickness hns no effect upon the etreamwise pressure gradient
In the tunnel at the position of the airfoil.

Wake eff@.- It is shown in general terms in reference

5 that the Interference between the wake of a body and the
walls of a closed-throat wind tunnel Elves rise at the posi-
tion of the body to n ‘velocity increment and a etreamwlee
pressure gradient which are not present in free air. This
is true for nny type of body and any shape of tunnel test
section. The magnitude of this Telocity Increment and pres-
sure gradient in the case of an airfoil spanning a closed-
throat rectangular tunnel can be determined approximately by
replacing the wake by the flow from a suitable fluid source
and the tunnel walls by an infinite eystem of image sources.
In the case of the airfoil spanning a closed-throat circular
tunnel, this treatment is no longer possible since no system
of Images sourcee is known which will satisfy the boundary
conditions at the tunnel wall. A more complex method of
analysis could conceivably be devised for this case; however,
since the calculation is highly approximate even In the case
of two-dimensional flow, such a-l analysls does not appear
warranted. For present purposes it is probably sufficient to
assume that the midspan section of the airfoil in the circu-
lar tunnel experiences the seine velocity increment and pres-
~ure gradient as a result of the wake interference ag does
the same airfoil in a rectangular tunnel of a height defined
by equation (41). This assumption leads to the simplest ex-
pression for the final corr~ctlon to the measured drag coef-
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ficient and ehould give reeu”lta Which are reasonably accurate.
If It is aaaumed that tha oenter of the wake lies in a hori--,
zontal plane coritainin’g-the .dl~eter of the”tunnel, it followe
from consideration of symmetry that the wake interference
does not contribute to the yertical Induced velocity Vzl at
the airfoil.

It has already been Indicated that the interference asso-
ciated with the camber cf the airfoil has no effect upon the
~tream velocity St the model. The total Increaee in velocity
for the complete airfoil In the oircular tunnel Is thus given
by the sum of the increments caused by the thickneee and the
w~ke of the airfoil. In reference 6 it is shown
analagous case of the airfoil in the rectangular
true velocity V at the position of the airfoil
bc written

{
=TJll+ 1

Au + l+o”4(Mt)a”v
[1-(MI )~] 3/~ l-(Mf)a ,

where u and T are factora denendent uDon the

that for the
tunnel, the
may finally

sixe of the
airfoil relative to the tunnel, ‘~ is a ~actor dependent
upon the shape of the base profile, and cd! 1s the drag

coefficient of the airfoil as measured in the tunnel. Ths
first correction term in this equation represents the veloo–
ity increment caused by the airfoil thickuess and Is found
by substituting the proper value for the equivalent doublet
strength in equation (24). The second correction term repre–
seata the velocity Increment associated with the wake of the
airfoil.

The factors a and T in equation (42) are defined by

and

(43)

(44)

“.whers (c/h) is tha ratio of the.airfoil chord to the tunnel
height. An analytic expression for A is given In equation
(3) of reference 5. Values of A for a number of base pro-
files are given in table I, which ie reproduced from this
reference.

---- --- . - - ..- —.— ---
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If it is Bssumed that the height of the equivalent rec-
tangular tunnel with regard to the wake Interference is the
same as that given by equation (41! for the thicknesta inter-
ference, the true velocity in the circular tunnel is found
simply by substituting hz from equation (41) for h In

the factors o and T of equation (42). The true velocity
at the midsp&n secti’on of an airfoil spanning a circular
tunnel is thus

v
{

SVl 1 + —. 1 AJ + 1 + 0.4(141)a

[&(~l)a] 3/a 2 1 - (Ml)a
Tacdr

}
(45)

where the factoro ‘a and a= are defined by

and

T ()= 0.321 :
2

a

‘a ()= 0.339 c
:/

( 46’)

(47)

A correction to the stream velocity implies corrections
aiso to the stream dynamic pressure, Ileynolds number, and
Mach number. These corrections for an airfoil spanning a
rectangular tunnel have b6en determined In reference 5 on the
basis cf the assumption that the flow is adi~.batic. The
corresponding corrections for the circular tunnel can he found
by replacing the factors T and u in equations (29), (32),
and (33) of reference 5 by the f%ctors Ta onii ‘a of the

present paper. The true dynamic pressure q, Reynolds num-
ber R, and Mach number M at the mldspan section In the
circular tunnel are thus rel~ted to the corresponding quanti-
ties In tho Lndisturbcd stream (denoted by primes) by the
equations

{

2-(Mqa
q=q’1+

c2-(Mf )2] rl+0.4(1+f)2J T ~dt

L1-(Ml)a]~/a “u=+
}

(48)
1–(M1)2

2

{
R= R~l+

1- o.7(Mf)2 Au, + [1-0* 7(:~’)2][ 1+0fi(P’)3 \

cl=(M’)a] 3/a —
~acdi, (49)

l-(~;)a

{
M = 14[ 1+

1+ 0.2(10)2 Au=+ [1+0.2 (M’)a][l+0.4(Mf)q ~ cdl

[1-(M’ )q ‘/2
a }

(50)
J - (M’)a
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Numerical values df the functions of 141 which appear in
these equations are given In table II, which is reproduced.,. ,
fr”onir-iifer-eric’e5’.‘- ““ “-”“ ‘ . -- .

At low Mach numbers , ~he terms containing T2c# in the

equations for the corrected stream eharacteriatice are usually
negligible as compared with the terms containing Aaa. At

high Mach numbers, however, where the drag coefficient is very
large, the terms with TaC&l predomi.n~te.

.

Relations between Airfoil Characteristics

in Tunnel and in l’ree Air

The characteristlcra of the airfoil in free air are now
readily determined In terms of the characteristics at the
midspan section in the tunnel. It is simply necessary to Rp-
ply the results of the preceding sections to the relations
Ealrcady derived in reference 5 for the airfoil spanning a
rectangular tunnel.

Briefly, the method of reference 5 r~lates the section
characteristics in the tunnel at nn undisturbed stream veloc-
ity vi to the characteristics in an unconfined stream hav-
ing a velocity equal to the true velocity V which exists
at the position of the airfoil In the tunnel. The relation
is obtained on the basic of equal values of the so–called
catangent camponent of lift in the tunnel and In free air,
this being necessary to as8uro that the essential character
of the pressure distribution over the nirfoil 1s the same In
both caaea. By this procedure correction are derived which
may be applied to simultaneously measured lift, moment, and
drag coefficients and angle of attack in the tunnel to obtain
the corresponding quantities In free air. These corrections
appear as functions of the factors A and a, of the prod-
uct TZd’ , and of the Mach number M: of the undisturbed
stream. The correction to the angle of attack, which arises
out of the I“ntsrference effects associated with camber, is
proportional to u and Independent of ~ and Tc~’. The

. . correction equations for the lift and moment ccefflolents
contain corresponding *errne ‘proportional ’’t’ou alone, tc-
gether with terms which depend upon the thickness and the wake
effects and are proportional to the products Au and Ted’.

The correction to the drag coefficient appears as two terms,

—



–1

28 EACA ACE No. 5D21

proportional to AU and Ted’, respectively. The term pro-

portional tn Aa 18 In thig caee composed baelcally of two
parts, one due to the thickness effect and one due to the
wake effect.

The correction equatione for the airfoil spanning a
circular tunnel can be derived directly by modifying the equa-
tione of reference 5 In accordance with the reeulte of the
preceding eectione. Since the terms containing u exclueive
of A appear ae a reeult ●f the camber effect, the tunnel
height h In such ter!ze must be replaced by 0.843d as re–
qulred by equation (23). In the terms which depend upon the
thicknees and wake effecte and are distingulehed by the prod-
ucts Au and Tcdl, the quantity h ie replaced by 0.779d

in accordance with equation (41). Thie involves the aeeump–
tion already mentioned that tl.e height of the equivalent ree
tangular tunnel with regard to the wake effect Ie the same
as that calculated for the thickneee effect.

As in reference 5, the free-air lift, quarter-chord-
moment, and drag coefficients referred to the true dynamic
preeeure q are denoted by the conventional symbole. The
correepondlng quantities measured in the tunnel and referred
to the apparent dynamic preesure qs are denoted by the sane
symbolta with primes added. The final equatlone for the cor–
rected aerodynamic coefficients are then

_ [2-( K1)al[l+0.4(M’)al
T* Cd’

1- (M1 )a }

c= c /4 = cmc,~ {1 - ~ ‘“2

r2-(M~)=] [l+o.4(kfI )2] ~ ~dl

1- (~1)~ a
}

1 ‘1
+ c —-—

2 4[1–(M’)a]

(51)

(52)
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.“

{

3-0.6 (M’ja
.1, cd. = cd’. 1 -

cl-(141)q-~/2 ‘“~”” . . .
,----

~2-(Ml )=] [1+0.4( MI )q
Tacdf

,“ 1- (M’)a }’

and the corresponding angle ef attack” in degreee is

where the factor crl is given by

()
n

‘1 = 0.289 $

(53)

(54) “

(55)

and the factors ‘2 and aa are as already de fin~d In

equpt ions (46) and (47). I?umericsl values of the compresdl-
blllty factors which appear In these equations are g:ven in
table 11. Tho corrected quantities correspond to the true
Reynolds number and true Mach number as given by equations
(49) and (50).

I’rom a rigorous standpoint, the foregoing corrections
apply only to data obtained from chordwiee pressure distribu-
tions at the uldspan section of the airfoil. Actually, a8
has already been potnted out In the discussion of oamber ef-
fect, the experimental chordwlpe pressure distribution at any
given angle of attack is sensibly oonetant across the span.
The corrections should therefore be applicable with rauffi-.
cleat accuracy to data obtained from pressure dlstrlbutionfa
st any spanwise station.

Reference 5 also includes a msthod for correcting experl-
meutal chordwlse pressure distributions to free-air conditions
In the case of an nirfoil epsnning a rectangular tunnel. The
same procednme may be applied to.,pressure, distribution over
an airfoil spanning a circular tunnel if the factor T 1s
replaoed by T= %nd the factor a by al Wherever it ap-
pears alone and by CYa where it appears In the product ACT.

.——. -- —.—- —— -.
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Chok3ng at High Speeds

lIACA ACR MO. 6D21

As explained In reference 6, for tests of a model in
any closed-throat wind tunnel, there is some value of the
Mach number Mr of the undisturbed stream which cannot be
exceeded irrespective of the pcwer Input to the tunnel. Th 18
follows from the fact that at high speeds the combination cf
model and wind tunnel acts essentially as a converging-di-
verging no~~le, and the flow in the tunnel exhibits the char-
acteristics of the flow in such a nczzle. Thus , at some Mach
number less than unity In the undisturbed stream, sonic veloc-
ity ie attained at all points ~croOe a eectlon cf the tunnel,
usually In the vicinity of the model. When th”ls occurs, in-
creased power input to the tunnel serves merely tic extend the
region of supersonic flow dewnetream of this conic section
and has no effect upon the velocity of the stream ahead of the
model. ‘The tunn”el is then said to be “ and the Mach“choked,
number M’ of the undisturbed flow ahead of the airfoil has
ita maximum attainable value. This value Is described aa the
apparent choking Mach number, the word “apparent” being used
to differentiate this value from the corresponding free-air
Mach number N which wculd be computed frcm equation (50).

If It Is aaaumed that the section of sonic velocity Is
coincident with the aectlon of minimum area between the model
and the tunnel walla, the apparent choking Mach number can be
obtained from elementary consideratlona cf unidimensional
adiebatic flow, aa shown In reference 5. I’or the present caae
of a constant—chord airfoil spanning a circular tunnel, the
apparent choking Mach number Mlch if finally defined for

air (’v= 1.4) by the relaticn

4 ()te Mtch
- 1-
TT ~J =

[ 1
~+ ‘“’da-l 3

6

(56)

where te ia the ‘effectiven thickncsa of the airfoil and
d la, as before, the diameter of the tun~el. A graph of this
relation ie given in figure 4. Aa a matter cf Interest, the
reaulta are shown for the auperaonlc as well aa the subsonic
flow regime. The reg~cn above the curve repreaenta an lm-
poaalble stata of flow.

In estimating the apparent choking Mach number in any
practical caae it ia nectiasary to replace the effective thick–

——-
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# ness t~ by the projected thlokheas ‘P of the airfoil no-

rn.a.lto t.~e direction. of.-flou.. . ~B- indicated. in reference 5,.-.!
this procedure leads, In the case of the eubtaonic wind tunnel,
to an overeatihation of Mlch because it neglects the possi-

ble contraction of a pertion of the tatresm aft of the airgail
as well as the effect of the airfoil boundary layer.

The Iniportance of the boundary layer and the accompany-
ing drag-with regard to tunnel choking is pointed out in ref–
erence 5, where the apparent choking Mach number is calculated ..
for a flat plate at sero angle of attack in a two-dimeneional-
flow wind tunnel. Since the projeoted thickness for the plate
is zero, the unidimensional theory would indicate that no
choking occurs. Actually, because of the faot that the plate
experiences drag, choking does take place. Similar consider~
tlons hold, of course, for a flat plate spanning a circular
tunnel. In this case tha apparent choking Mach number for
air (’Y = 1.4) is given by the equation

(~-c\cd’ = 1 + 1.4(Mtch)a
w XJ 2.8 (Hlch)a

{...-”} ’57)

A graph of thie relation is given in ftgure 5. The effect of
drag on choking for supersonic as well as subsonic wind tunnels
is shown. It can be demonstrated that the points on the curve
correspond to a Mach number of unity in the flow far down—
stream of the model where the wake has spread completely to
the tunnel wall. Points above the curve represent Impassible
condltlone of flow. In meet caaes encountered in subsonic
tunnels, the apparent choking Mach number determined by the
thickness of the airfoil and defined by equation (56) is usu-
ally the lower. 3’or very thin airfoile at small angles of
attack, however, the value of Mfch given by eqUatiOn (57’)

can have the lower value. At present no- way Is known to com-
bine the thickness and drag effGcte in a single calculation/“
as should logically be done. >

It should be noted, ae pointed out in detail In refer- “
ence 5, that the flew In a tunnel at choking does not corre-
spond to any flow in free air. ~u?thermore, for a range of
Mach numbers just below choking, where the flow is influenced
to any extent by the restrictions which finally promote chok-
ing, any wall-interference correction is of doubtful accuracy.
This is particularly true if the model IS at an appreciable
angle of attack so that sonic velocity is attained across the
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stream on one side of the airfoil before it is on the other.

EXPERIME19T

The experimental Investigation was initiated for two
reni30n0 : (1) to determine the spanwise distribution of lift
over an airfoil spanning a closed-throat circular tunnel, and
(2) to examine the validity of the theoretical interference
corrections derived In the preceding analysis. As has been
previously mentioned, the development of the theoretical re-
lations requires a knowledge of the variation in lift over
the span of the airfoil. Since no theoretical or experimental
evidence regarding this matter was available, the spanwiEe
variation in lift was investigated experimentally for an IIACA
4412 alrfoll for two ratlce of airfoil chord to tunnel diam-
eter. The results of these tests are also directly applicable
to the examination of the validity of the theoretical c:)r-
rection equations.

The experimental work was performed in a low–turbulence,
nonreturn-type wind tunnel with interchangeable throat sec—
tions of 14- and 8–inch diameter. The two chord—diameter
ratios were obtained by testing the same airfoil In each
throat section. Since the airspeed was held constant throug&
out the tests, this arrangement pei-mitted the Reynolds num%er
and the Mach number to be duplicated simultaneously for the
two chord-diameter ratios. .tnthis manner the effects of
any variation in these parameters were eliminated from the
teats.

The NACA 4412 airfoil was used because a model of suit-
able size was already available ideally equipped for pressure-
dletribution teats. The model, which is described in refer-
ence 16, was of 5—inch chord and 30-inch span. This chord,
together with the two thro~t diameters, gave chord-diameter
ratioe of 0.357 and 0.625. In the tests, the airfoil ex-
tended through the walls of the tunnel and was clamped In
tight-fitting support blocks which prevented any leakage of
air at the walls. The 54 pressure orifices Ioc&ted &round
the surface of the midspaa section of the model were connected
to a multlple-tube manometer for measurement of the pressure
distribution over the airfoil. To secure aa accurate pres-
sure-distribution data as possible, alcohol was used as the
manometer fluid and the liquid heights were recorded photo—
graphically.
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Pressure-distribution records were secured at each of
eight angles of attack from 4° to +15° at a Reynolde number
of.,approximately 450”,000 and a Mach number cf approximately
0.2 with the model mounted in bsth the 14-inch and the 8-
Snch diameter throate. . The spanwise dletribution of lift
wae determined fcr each angle of attack by eliding the pres—
cure oriflcee laterally from one wall to the other and re-
cording the indicated pressure dietributlone at a number @f
spanwiee stations. The chordwlse preeeure dietributlons were
plotted and mechanically Integrated to obtain llft and quar-
ter-chord moment coefflciente. 190 drag coefficient were ob-
tained because the experimental Installation did not permit
balance meaeuremente to bo made and wake surv”eys were mot
feasible.

By testing the airfoil In both erect and Inverted atti–
tudes the inclination of the nlr stream with respect to the
tunnel axle was determined for each throat section. The
stre~m ~ngle was found to be +0.45° for the 14-inch throat
and 0° for the 8-inch throat. Gorrectiona have been applied
to all angles of sttack for the measured angularity.

The spanwlse distribution of lift coefficient uncorrected
fbr tunnel-wall Interference is shown for the two chord-f3iam-
eter rntios In flguree 6 and ? in which llft coefficients at
various angles of attack are plotted as a function of the
epanwlse lccaticn of the measurement plane.

Curves of lift coefficient against angle cf attack fcr
the two chord-diameter ratios are shown uncorrected for tunnel–
wall Interference in figure 8(a). The reeults given pertain
.to the section of the airfoil at the center line of the tunneL
The correepondlng curvee corrected for wall interference by
means of equations (51) and (54) are shown in figure 8(b).
In applying the.corrections, the term containing Tcdf was
necessarily omitted as no measurements of drag were made.
For the values of Cdl to be expected in such tests, however,
thie term would be negligible in comparison with the remafn-
ing terms so that this omission doee not affect the final re-
sults. I’or purposes cf comparison, secticn llft characteris-
tics as obtained by Pinkerton from tests of a finite-epan
rectangular airfoil in the Langley variable-density wind tunnel
(refeyeance 1.7) ar.e..also showp., These data correspond tc an--
effective Reynolde number of 450,000 and are thus directly
comparable to the reeults of the present test.

In figure 9(a) curve~ of quarter-chord moment coefficient

. .
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against lift coefflclept are shown uncorrected for tunnel—
wall interference fer both. chord-diameter ratioa. The same
data are plotted in figure 9(b) after correction for wall in-
terference by means of equations (51) and (52). Alse shown
for comparison are the corresponding data from r=ference 1’7.

DISCUSSION

An-examination of figures 6 and 7 reve.%ls the previously
mcntloned fact that there 1s n.o appreciable variation in lift
over the span of the airfoil at all angles of attack up to
those closel~ approaching the stslling angle. This observa–
tion holds for both ch~rd-diameter ratios. In the vicinity
of the stall a spa~wiee variation In lift appears wklcb be-
comes progressively msre erratic as the angle of attack ie
increased. As mlgkt be expected, this variation becomes ap–
parent at a lewer angle In the case of the larger chord–diam-
eter ratio. The results of figures 6 and 7 corroborate the
conclusio~ of appsndlx B for the particular case of the air—
foil spanning a circular tunnel.

E’rom flgur~ 8(b), it is seen that the corrected lift
curves for the two chord—diameter ratioe agree almoat exactly
with one another except at angies near the stall. Below the
vicinity of the rntall the corrected data coincide with the
reeults of reference 17 except for a constant angular dis—
placement of approximately 0.2°. In reference 16, Pinkerton
estimates that his values for the angles of attack may be
too large by a constant error of approximately 0.25° because
of a possible error in the %esumed direction of the Otream.
It is thought that the angles of attack of the present ex–
periments are accurate to within +O.lO. These limits of ac-
curacy are sufficient to accouct completely for tho app~rent
angular displacement.

In the region of the stall, the corrected lift curves
for the two chord-diameter ratios do not mutually coincide,
but the data for the chord-diameter ratio of @.357’ agree with
Pinkerton’s r-suits within 2 percent. As previously men–
tioned, Einkertonfs tests were made with a finite-span rec-
tangular airfoil, for which thG cross-span vartation in lift
1s necessarily large. It is ~ot to %e expectbd that the de-
termination of maximum section lift from such tests would be
as accurate as from tests @f a through model, for which the
cross-span lift variation is small.
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It is seen from figure 9(b) that the corrected moment
curves agree satisfaotor ily” with each other and with the re-

-. ..su.lfiaof refer ence. 17.

In summary, fer angles of attack below those In the
region of maximum lift, the results presented in f~gures 8
and 9 demonstrate the validity of the theoretical lift, mo-
ment, and angl-of-attack oorrectiona for low Mach numbere
and chord-diameter ratloa up to at leant 0.625. 3’or angleta
in the vicinity of maximum lift, the corrections are not
strictly applicable up to such a large chord-diametar ratio.
The re6ulta of the present teet ~ndicate that an accurate de-
termination of maximum lift can he made with a chord-diameter
ratio at leaat an high a~ ‘0.36. An evaluation of the accu-
racy of the correction equations at high Mach numbers Is not
possible on the basic of the experimental evldonce available
at present. It is to be expected, however, that the maximum
permissible ohord--diameter ratios will decrease as the Mach
number Increases.

The data of the present paper enable no definite con-
clusions to be drawn regarding the validity of the drag cor-
rection. However, In view of the ancuracy of the other cor-
reotione for the circular tunnel and in view of the fact that
the corresponding drag correction for a two-dimensional tunnel
Is known to be accurate, it Is to be expected that this cor-
rection will give a aatiefactory evaluation of the wall inter-
ference upon the measured drag.

The equations of the present paper should not be expeoted
to give accurate results when applied to tests in whioh air
leakage occurs at the tunnel wane. In much teete the lift
at the walls drope markedly, so that the aesumptlon that the
lift is uniform across the span Is no longer valid. The im-
portance of avoldlng such leakage, if reliable airfoil ohar-
acteriBtica are to be obtained, Is pointed out In reference
5 with regard to teets in two-dimensional tunnels. The same
general conelderations apply in the caee of an airfoil span-
ning a circular tunnel.

.
CONCLUSIONS

Airfoil data obtained from teate at aubaonlc speeds of
an airfoil spanning the center of a closed-throat c~rcular
wind tunnel can be corrected to free-air condltiens by means
of the following equations;

.. ---- .--—. . —-- -
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{
v =Vf 1 +

1 + 0.4(M; 2

[1-( M:)a] ~~a ‘Ua + ~ - (H’)! ‘add’ }
(45)

{

2 -( MI)a
qq!l+

= A=a + [*( M’)al h+o.4(M’ )a]
[l-(w) apla .}
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1 - {Ml)a
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{
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a ==!+

{
cl’ + 4Cmc ●!
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[2-(14f )q cl+o.4(M-f)al T cd,
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l-( Mf)2
a

}

(54)

(51)

1

{

2-- (lit)a
%c/4 = cmc/4 1-

[l-(Mf )~ 3/a ‘U? “

_ [2-(M’j7 [1+0.4 (M’)a] T ~dI

1- (M’)a
a }

‘C”* ‘ (52)

cd= cd’ {1 - md----~%)?!+:i:;:”a]”a] ‘ ‘:
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where ‘a s UIS and ‘a are given by ,
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= 0.339 ~

and A i8 a ‘dimena ionless factor the ~ua

(46)

(55)

(47) .

of which demends uocn
the shape of the base profile of the airfoil. (See- table”.l
and equation (3) of ref ercnc”e 5. ) The remaining symbols are
defined In appendix C. Iifumerical values of the functions of
~1 which appear in these equations “are given In table 11.
Experimental pressure diptrlbuti,onn can also be correc$ed by ‘
proper modification of the method of reference 6 ag Indicbted
in the text. ..

Teste of an EACA 4412 airfoil at low upeed for two ratioe
of airfoil chord to tunnel diameter demonetr%te the validity
of the foregoing equations at low Mach numbers. At angles of
attack below the region of maximum lift, the equations are
applicable for chord diameter ratios up to at leaet 0.625, the
maximum ratio tested. In the region of maximum lift a ohcrd–
diameter ratio of 0.35 is known to be perr.issible, nnd etill
hi~her ratio~ may give eatiefactory reeults. An examin~tioa
of the validity of the equatione at high Mach numbers is not
possible at prceent, but the maximum permissible chord–diam-
eter ratios may be expected to decrease as the Mach number
increaseO .

The tests also indicate that at 10V Mach numbere the
epnnwiee lift distribution on an airfoil spanning a cloeed–
throat circular tunnel is essentially constant except at
angles of attack in the immediate vicinity of the stall.
This result corroborates the general conclusion of appendix
B, in which it is demonstrated that the lift ie uniform across
an untwisted, conetant-chord airfoil spanning any closed-
throat wind tunnel, irrespective of the cross-sectional shape
of the tunnel.

The correction equations cannot be expected-to apply at
or in the immediate vicinity of the choking Mach number, which
is-the maximum Mach number attainable wath a given combina- ‘
tiou of airfoil and tunnel test section. The choking Mach
numbGr can be estimnted by meane of equatione given in the
r6port.

Amee Aeronautical Laboratory,
Mational Advisory Cormittee for Aeronautlca,

Moffett Yield, Calif,
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APPENDIX A

TEA~SFCRMATIOH OE’ SERIES Or B!ESSIILFUECTIOll

The series involving Bessel funotlons which appear in
the discussions of the interference effects associated with
airfoil camber and thiokmees “are, 8s pointed out In the text,
poorly suite~ for use at small Talues of the variable x. It
will be shown here, by means of a method demonstrated by
Watson (reference 15), that the series may eaah be exmressed
as a combination of elementary f~nctions and a convergent
power seriesg The resulting eerles are well adapted for use
In the present problem. The notation used for the Bwiisel
functions Is that of Watson (referenoe 13) and of the Smith-
sonian Tables (reference 14).

Series for camber effect.— The discueolon of the inter-

ference effects associated with airfoil camber Involves the
series w

convergent for negative values of x. The summation with
respect to s extends over all the positive roots of the
eouation

J1’(X6r) = O (A2)

Letting js = Asr and K= -x, the series may be written

where the summation Is taken over all the positive roote of
the equation

J.l’(j~) = O (A4)

Now, consider the function



I
. .

m J~(v) Yl(wm/r) - J1(wm/r) Yz- (w) -w E/r (A5)-.
2

8
J1’ (W)

where the quantity YI is a Bessel functl%n of the second
kind of order unity. This function has a simple pole at each
of the points w = *SS and Is one-valued and analytic at all
other points in the-complex w-plane. Its residue at the point

3s can be shown to be

Jl(J#) -ds~/r “ “
e

js Jl(js) Jz” (#a)

which is Identical with the general term of the series (A3).
Ep the therorem of residues, the integral of the function
(A5) taken count ercloctiiae around a contour inclosing the
portion of the complox plane to the right of the imaginar~
nxis is ther. equal to 211iw~9 The Integrnl along a large
semicircle on tho right of the imaginary axis tends to zero
when the radius of the semicircle tends to infinity through
values such that the semicircle avoids the poles of the inte-
grand. It is thus necessary to ret%in only the integrnl along
the imnginmry axis. The contour must, however, have an indon-
tntlon to the right of the origin, since the integrand has a
?ole thero with residue (ra+na)/rn. If the rndius of the ln-
dentntion is mado to approach zero, W1 may finally he written

From the known relations for the modified Bessel func-
tions, It is readily shown that

- -. Jz(Xlt) = *Ii(t)
1

yz(*it) = -Ii(t) A: iKl(t)

Jz’(*t) = Ix’(t)
.

Y1’(xit)”= &lI1’ (t) + ; KI’ (t)

,{

}

(A7)

J

I .—. — ---—----— -.--
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where II and Ifl are modified Zeeael ?unct ions of the

first and second kind ef order unity, By writing the inte-
gral in equation (.:6) in two parts, one along the positive
and one along the”negative imaginary axis, and replacing w
in these integrals by +lt and –it, respectively, Yl theu
:zcl~meo

a-a

[
Ii’(t) Kl(tn/r) - Il(tq/r) K1’(t)

+1 —
1-l,a Ii’(t)

sin (bK/r) dt

o

or m

0

1 FKl”(t)
——

/
Il\t~/r) sln(tK/r) db

lT.. Ii”(t)
o

(A8)

The value of the flrct integral in this equation is given
ty Watson in reference 15 as

w

(A9)

The second i~tegral can be evaluated by expanding the
product Il(tq/r) sin(tK/r) in ascending powers of t and

integrating term by term. The series expansion for the prsd–
Uct is

m Oa

‘y’r (–l)P t2( k+p+l ) ,Isk+l #p+~
=

~ k! (k+l)i (2p+l)! 22k+z ra(k+p+l )
==0 p=o1.-

and the term-b~tern integration glv~is
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m

rKz’(t)
Il(tn/r) ain(t K/r) dt

‘o Ii@(t) “

mw

m (-l)PW? ak+ 1~ap+ 1
2(k+p+l) q

=l?

G p=o
k! (k+l)! (~p+l)! 2ak+l ra(wp+l)

\

(A1O)

The coefficient
% k+p+l ) = “2f

itagiven by

which may be written after integration by parts

1

[

taf-a
w’~f = –—

(l+ta) ~t
(All)

(2f+l)n . [ll’(t)]a
o

This integral is a constant for any given value of f.

Revgrting to the original variable x, the expansion
for xl may finally be written

rx
wl=-r2+~2-—~

2rq 21J-T-ra+xa

UY

,? y

(-l)P ~’2(M +1] ~ak+l Xap+l
(A12)

k=o pac k! (k+l)! (2P+1)! Zak+l ra(k+p+l)

Thi.e agrees with the result given without derivation by Tanl
and Talma (refgrence 16).

I’or purposes of domputatl~n the coefficient I.&f ~B

written

-.. . .
~“’2f = – (2f1+l)

{
P ‘2( f-l) + P ‘af } (A13)

.—— — — —
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(A14)

lne quantity Pt2f can then be expressed In a form suitable

for computation by means of a method devised by Watson for
an anal~gous inte&al (reference 15).

As the first step, the function

t 2f

[11’(t)]2 cos(mt/b)

is written at3 a Eum of partial fractions,
tive constant which will %e fixed later.
plished by considering the integral

(A15)

b being a posi-
Thls can be acccm–

r W2f dw
I (Ai6)

‘j (W-+) [11’(W)32 cos(mw/b)

around the circle !WI =R in the complex plane. The inte–
grand of the Integrai (A16) h:LS poles at the points

w= t, w= +lJs, w= *(n+ l/2)b

where .js is a positive zero of J1’(w); and s = 1, 2, 3,

.... n= C, 1, 2,3, . . . . The residue at the simple polo
at w = t is the function (A15). The residues at the
simple poles at w = ●(n +1/2)b are

(–i)n (n + l/2)af baf ‘1

n(nb+ 1/2 b+t~ [11’(nb+l/2b)]2

The poles at w = +ije are second order FO1OS ; the residues

there are
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Now, the integral (A16) taken around the circle IWl =R
tends to zero when E tends to infinity in euch a manner
that the circle never passes through a pole of the lnte-
grand. It fallows from the theorea of residuee that the
sum of the residues of the Integrnnd at all its poles 1s
zero; thus

m
~ af 2

I

(-l)n (n+l/~)af+tbaf+a

[I,’(t)] cos(nt/b) = F n=O [(rib+ l/2 b)a-t’]~l’( nb+l/2b)]a

(A17)

By multiplying this equation by cos(mt/b) and inte-
grating from -~ to +-, It can be shown with the aid of
certeln Integrcl relations given by W~tson (refer enoe 15,
P- 36) that

t2f dt

[ll’(t)]a

+ 2TT(-l)f

..

m

Y (n+l/?)=f baf+l

n~O [Iz’(nb+l/2b)]a

a 2 cosh(wJJb)J~(je)(l-j~ )

3
–2f

- ~na
- — + (mj~/b) tanh(mj9/b)

1- Jaa 1 (Ala)

—.. . - —.
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w

o
f

+ (–1)

-(Zf +

i’h~ first series i~ this equation converges rapidly when b
10 l.xrg~: ttie secord when b is emall. A reasonable con– .
pi’O~i Se fok’ yurpoees cf calculation is to take b = 1.

Equatlor. (A19) with b = 1 has been used together with
eq.uatior.(.*13) to determine the first four values of the coef—
ficient w Zf. The final results are

P*4 = –1.6.?7 i

W’e= -9.78
1

(A20)

Comparable values of u’= ar.d M’4 to the same number

of significant figures are g:ven without derivation In refe~
ence 18. The value of U’a In this latter reference agrees

,
with that of the present paper, hut w 4 differs by one in
the third dgclmal place. The v%lue given In (A20) has been
carefully checked for several values of the parameter b and
appears to be correct. Yalucs of u ‘a and w ‘~ apparently
have not previously berm computed.

Series for thlckncps effect.- The series which appears
in the discussion cf the Interference effecte associated with
ai:foil thick~ess Is

(A21)

.- --
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convergent for nagatlve valwa of x. The summsitlon with ro-
0p6ct to B e*&*T~ the ~istlve roote of the equR-

E@.. ....-!.. . . . . . - , -

-. - .

.7.

Lettiug j~ = h~r and

written

w= u

where the summation Is

The function

Jl(Aer) = O (A22)

Kn-x m before, the series may be

taken over the positive roots of

Jl(&) = O (A24)

Jl(w) yl(wn/r) - Jl(wm/r) yl(w)~, “e-w K/r
2 (A25)

J1(w)

hns a simple pole at each of the poizrtta w = *J~o Its residue
at eaoh of theee ~oint~ can be shown to be identical with the
general term of the ser iC.S (-427). Dnllke the functi tinIn the
yrcvious series, thlti fuflct!.on is regular at the ar igin. In-
tegration around the portion of the coaplex plane to the right
of the Ir.aglnnry axis then gives

mi

[

~ Jl(w) Yl(wq/r) - Jl(wq/r) YL(w)
‘wK/r dw (A26)wa=– J-

%i . z
we

Jl(w)
-m i

By applyi~g the first two of equations (A7) and combining
the integralc along the two halves of the Imagiaary axis as
before, the aerieg keoometa

m

(A27)

The first integral can be evaluated by differentiating
relation (A9) with respect to K, This aperation gives

I .-
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The second integral can be evaluated aa before by ex-
panding the product tIz(tq/r) cos(ttt/r) in a8cending powere
of t and integrating term ky term. The eerlee expansion
for the product is

tIl(tq/r) oos[t~/r)

~ ,’ ~ak+l ~ak+ap+lk! (k+l)! (2p)! Q
k=o p—=o

and the term-b~term Integration gives

J ‘l(t) tIl(tq/r) cos(tK/r) dt
m

o
Co=

n (-l)P W2(k+P+~) mak+l Kap
=Tr (A29)

k=O p=h k! (k+I.)!(2P)! 2~k+l rak+ap+~

whore the coefficient
‘a(k+p+l) = ‘~f

Is given by

for

Wa =

Reverting to the original variable x, the expansion
Wa may finally be written

r aq

2(71a+xa)3/~

ma

II (-l)p ~a(k+p+l) 113k+l x2P

k?(k+l)! (2p)! 2ak+l rak+aP+l
k=O p=O

(A31)

The Integral (A30) hzs been investigated by Watson (ref-
erence 15). Its value for any given r can be computed from
the series

. . . . . .—— — ._ ... . . ...... . . ._. _ _ ____ .- -- . .— -
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. .

‘7j~af-1
+ (-l) f-L

.[

(m&/b) . ‘
2 - caeh%~#)S=l

J-T13#l
-(2f+l) —

coOh{wJ*/3) 1 “ ( A3 2“)
..

where b is an nrbitrary positive constant. ~hls equation
has been ueed with b=l to determlno the first fsur valuee
of lb~f@ The final resulte are

. .
W4 = 1.200

\
= 7.46~e

We = 96.2 J

(A33)

The firmt two of theee valuee agree ta the three decimal
places with the two numerical valuee computed by Wateon. The
remaining two values have not previously been computed.

COl?STAllCY (JFLIFT OVER All AIREOIL SPAMMI?JG

A CLOSED-THROAT TUITHEL “

,. . . .. . . . ..,. -

Coneider an infinitesimally thin untwieted airfdil of
constant chord epannlng a cloeed-throat wind tunnel of. ‘arbi-
trary eection. Such an arrangement is ehown ih figure 10i
which ie a eection of the tunnel as seen from downstream. It

— .- . .. .. . . . . . . .- .—— — .— .- -
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&

is aes”umed that the flow In the tunn~~ Is nonviaaous and that
the airfoil therefore has no drag. .

Suppose for the time being that the lift varies in taome
manner across the span of “the airfoil, Any such variation
will be accompanied by a system of vortices trailing from the
airfoil and extending infinitely far downstream. If the usu-
al assumption Ie made that the trailing vortices are parallel
to the axis of the tunnel, the flow pattern In a plane normal
to the axis at infinity downstream must be of the nature shown
in figure 10. The flow pattern, In general, oonsists of a
number of separate sections within eaoh of which the flow hae
a closed, circulatory character. The line AB, which repre-
sents the projection of the airfoil, extends across every
such section, and each of the sections contains the filaments
of a portion of the syotem of trailing vortices. The exact
character of the flow pattern in any particular case depends
upon the spanwlse variation in lift and upon the cross-
sectlonal shape of the tunnel,

Now, considen the flow around a streamline within any
one of the separate sections of the flow pattern - say the
streamline OD In the section at the left-hand side of the
tunnel in figure 10. This streamline, like all the strea~
llnes, Intersects the projection AB of the airfoil in two
points, denoted as C and D In the figure. The fact that ~
in the presence of the tunnel wallo each streamline must in-
tersect AB in two points 3s essential to the discussion.
If It is supposed for purposes of discussion that the direo-
tion of flow is clockwise as indicated, the vertical component
of velooity at C is upward while the corresponding component
at D IIS downward. This direction of flow corresponds to a
net circulation in the clockwise direction for all the trall-
Ing vortex filaments enclosed within the streamline.

At the position of the airfoil the pattern of transverse
velocities induced by the trailing vortices is geometrically
similar to the pattern ~t infin~ty downstream, only the magni-
tude of the velocities being different. Hence, at points on
the airfoil directly ahead of point C, the vertical veloc-
itv Induced by the trailing vortices is upward. At points
direotly ahead of point D, the velocity is downward. Thus ,
since the airfoil is untwisted, the airfoil seation corre--
sponding to C operates at a larger effective angle of at-
taok than doee the section corresponding to D. If the air-
foil Is of oonstant chord as assumed, this means that the
lift at section C must be greater thap the lift at section D.
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As has been pointed out, howewer, the trailing vortioee
discharged between sectione C and D must have a net cir-
culation In the oloclcw-iee direatlon in figure 10. ‘ This meane
that the circulation of the epanwime bound vortlcde at eec-
tlon D must be greater than at section C. Since the dl-
ractton of etream flow was taken to be toward the observer,
this in turn meane ‘that the lift at eeotion C must be leee
than that at emotion’” D, which ifI In direct contradiction
to. the provioue result. The original supposition that the
lift varies across the span thue leads to two mutually con-
tradictory concluslone and is therefore invalid. It follows
that the spanwise distribution of lift is uniform across an
untwisted, constant-chord airfoil mpannlng any closed-thront
wind tunnel, Irrespcotive of the cross-sectionnl shape of the
tunnel.

As mentioned nt the mutset, this result depends upon the
assumption that the airfoil is infinitesimally thin and has
no drag. It will not be Gtrlctly true If the increaGe in ef-
fective stream velocity caused by the interference between
the walls and the airfoil thickness and wake Is not uniform
across the span. The result also neglecte any effect that
the boundary layer along the walls of the tunnel may have
upon the lift distribution. That those approximations are
not serious, at least In the case of the circular tunnel, is
indicated by the experimental results of figures 6 and 7,

The foregoing reasoning 1s, of course, inapplicable for
an airfoii which doee not span the tunnel or for a flnite-
span airfoil in free air. In these instances, the projection
of the airfoil does not extend across all cf the sections in-
te which the transverse flow pattern is divided, and the
streamlines of this pattern need not Intersect the projection
of the airfoil In two points. Under these conditions a type
of varying lift distribution o.an be found whioh “does not lead a

“ to a l~glcal inconelstency.

APPrnllDIX C

LIST Or IMPORTAHT SYMBOLS —

c

d

airfo.11 chord

diameter @f circular tunnel

—
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r

h

hl

h=

T

Ta

u

=1

‘2

A

a

cl

EACA ACE ~0. 6D21

rndlue of circular tunnel

height of rectangular tunnel

height of rectangular tunnel equivalent to circular
tunnel with re~ard to camber effect

height of rectangular tunnel equivalent to circular
tunnel with regard to thickness effect

\()1/4 : ; chord-height factor with regard to wake

effect in rectangular trnnel
.

00.321 J$ ; chord-diameter factor with regard to wake

effect In ciroular tunnel

*2fc\a ;

iii (
chord—height factor with regard to camber

r)

and thicknees effect in rectangular tunnel

0.289
“Cla

~)z; chord—diameter factor with regard to

camber effect in circular tunnel

(J

c?

0.339
:) ;

chord-diameter factor with regard to

thickness effect in circular tunnel

factor depending upon shape of base profile (see equa-
tion (44) and table I)

angle of attack

section lift caefficlent

Om

/

section quarter-chord—moment coefficient
cd

cd section drag coefflclcnt

v stream velocity

q dynamic pressure
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M Mach numb er

R Reynol”ds ‘ntibbi

rectangular

cyl indr Ical

circulat ion

circulat icn

51

space coordinates

space eocrdinatea (see equations (l))

of eingle line vortex

per unit chord length

y and n coordinate of elementary

radial and angular coordinate of

in tunnel

vortex

elementary vortex

chordwifae coordinate cf elemcntarr vertex; a180
variable of integrat~on In equations (2) and (3)

velocity potential

Vx’ , v~’ x and 5 components of Induced velocity

AT I

k

‘P

t~

Wl,wa

J Ymm,

Im ,Km

Afj
-,, .

3S

increase in axial velocity at position of airfoil
in tunnel

doublet strength

projected thicknees of airfoil

effective thicknaes of airfcil

series of terms involving Bessel functione (see
equations (Al) and (A21) of appendix A)

Bessel functions of flret and second kind of order
m (Watsonts notation)

modified Be#eel functions of first and second. kind
of order m (Watscnle notation)

variable of sum~atien defined by the roots of the
‘equAtion ‘Jm (A~r)- = O

Aar; root of the equation Jm’(~~) = O
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w2f’t W’=f numerical coefficients (see equat lone (35) and
(la))

k,n,p variables ~f summation

t h- vayiahles of integratlen

K alternato variable defined as equal to -x
.

Superscripts

(’) when pertaining to fluid properties, denotes values
in the undisturbed stream in the tunnel; when per-
taining t~ airfoil characterics, denotes values in
tunnel, coefficients being referred tc dynamic
pressure q’

(’) denot~s firBc derivative of Bessel function with re-
spect to its argument

(+’) denotes second derivative of Besgel function with
respect to its argument
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